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We have developed a 3D wavelet-based filter for visualizing structural 
features in volumetric data.  The only variable parameter is a characteristic 
linear size of the feature of interest.  The filtered output contains only 
those regions that are correlated with the characteristic size, thus de-
noising the image. We demonstrate the use of the filter by applying it to 3D 
data from a variety of electron microscopy samples including low contrast 
vitreous ice cryogenic preparations, as well as 3D optical microscopy 
specimens. 
 
 
  
Introduction 
 
The conventional wisdom in modern structural biology is that as the resolution increases, 
structures become self-evident.  Recent advances in microscopy have increased the 
theoretical light/electron microscopy resolution to 50nm/1.5Å (Westphal et al., 2003; 
Reimer, 1997), so that images of unprecedented clarity should be obtainable. However, at 
these high resolutions, practical limitations, such as avoiding radiation damage, place 
severe limitations on the data collection process. The consequence of this is that 
obtainable signal-to-noise ratios are often significantly less than 1.0, due to a combination 
of shot noise and detector noise. This is an especially significant problem in cryo-EM 
tomography of unstained frozen specimens, where typically 100-200 tilted views need to 
be collected from the same sample and total doses need to kept below about 30 e-/Å2.  
The resulting 3D reconstructions are quite noisy, which makes it a challenge to accurately 
define the shape and location of desired objects within the tomogram.  
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Non-specific staining is another source of “noise” that further complicates interpretation 
of both EM and light microscopy data. For example, uranyl acetate is a popular EM stain 
that forms complexes primarily with phosphates on DNA, RNA, and phosphoproteins. 
Images that are acquired using these stains are biased by the properties of the stain and 
thus do not necessarily represent a true picture of the underlying structure. Interpretation 
difficulties are compounded if non-specifically stained structures are packed densely, 
which is typical for many biological samples. 
 
Light microscopy has related problems. Although the stains (especially fluorescent 
proteins) are very specific and provide strong contrast, experimental protocols often 
demand the collection of thousands of images from a single (often live) sample. In these 
cases, avoiding phototoxicity and bleaching of the fluorophore become paramount. As 
with the EM data, the result is a drastic reduction of the signal-to-noise ratios of each 
recorded image. Additional sources of noise, such as auto-fluorescence, background 
pools of unassembled fluorescent proteins, and instrument noise can contribute to the 
challenge of identifying and quantifying 3D cellular structures.  
 
Many researchers believe that a simple solution to these problems is to construct software 
that can filter the image and “bring out” the essential structure. Indeed, much effort by 
many groups, including ours, has been expended to develop filter methods to abstract 
structures and reduce noise (Nicholson & Glaeser, 2001; Rath & Frank, 2004; Böhm et 
al., 2000; Frangakis et al., 2002), with the best current method probably being anisotropic 
diffusion (Frangakis & Hegerl, 2001). Another approach is to locate known objects 
within the three dimensional reconstructions. Typically such matched-filter correlation 
approaches can find objects under conditions of very high noise, however, there is much 
utility in developing hybrid methods that have the noise performance of matched filters 
yet do not require a priori knowledge of the search object.  
 
Our approach is to develop a filter that preferentially highlights objects of defined size-
classes within 3D volumes. This suggests using a wavelet transform.  A wavelet 
transform is a convolution of a kernel (shape function) and the data. It differs from a 
Fourier transform in that the wavelet kernel is nonzero only over a finite spatial extent 
(chosen typically to equal the size of the feature of interest), whereas the Fourier kernel 
has infinite extent.  It is this property of the wavelet kernel that makes it better than 
Fourier methods at defining frequency content as a function of spatial location. The 
wavelet transform shows how strongly the data are correlated to the kernel at each 
location in the data.  
 
For ease of use and interpretation, we want the wavelet transform to have the following 
characteristics: (i) We want 2D or 3D data that are filtered with a wavelet of size n voxels 
to preferentially highlight those regions that have physical dimensions with a 
characteristic size of n voxels. (ii) The wavelet transform should be invariant to rigid 
body rotations, that is, rotating the wavelet transform of an object should be equivalent to 
the wavelet transform of the rotated object.  
 
In general, wavelet methods can be quite complex, particularly for 3D data.  
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Consequently, it would be an improvement to have a fast, efficient filter for 2D or 3D 
data whose only parameter is the characteristic spatial size of the structure of interest, and 
whose output is a spatial image of correlation strength.  The 3D wavelet-based filter 
described here is a realization of these ideas.  This filter, which highlights objects of a 
defined size-class, differs from a previous implementation of 3D wavelets (Stoschek & 
Hegerl, 1997) that used data-dependent thresholding at every wavelet size to globally 
denoise tomographic data.  
 
We demonstrate the utility of our filter on synthetic data by showing how it can extract a 
pair of mathematically constructed helices from a noisy background, even at low values 
of signal-to-noise. Four additional examples show how the filter works with typical noisy 
biological data: (i) EM data of positively stained microtubules, (ii) EM data of a 
negatively stained γ-tubulin ring complex (γTuRC), (iii) EM data of unstained 
microtubules preserved in vitreous ice, and (iv) light microscopic images of 
Caenorhabditis elegans meiotic cells. Although this filter was developed primarily for 
biological applications, it is generally applicable to any 3D (or 2D) data.  
 
Rationale for the filter and its mathematical structure  
 
A general 1D transform can be written as 
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where the “signal” f  is convolved with the function Ψ.  A wavelet transform differs from 
a Fourier transform in the choice of Ψ.  The Ψ  for a Fourier transform [

! 

" = exp(i # x /a) ] 
has nonzero values that extend over the entire x'  domain, thus, W is only a function of a, 
whereas the Ψ  for the wavelet transform is centered at x and is nonzero over a 
characteristic width a (Farge, 1992). The wavelet transform is a correlation function at 
each position, x. The correlation varies with the wavelet width a, and is maximal for 
some value of a, which explains how wavelets can determine where particular 
frequencies occur.   
 
The only physical requirement for Ψ is that a uniform signal of infinite extent produces 
no correlations, that is, 
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" (x # $ x ) /a( )% d $ x = 0 (Farge, 1992).  Beyond this restriction, the 
choice of Ψ is arbitrary, and is tailored usually to the particular problem of interest.  A 
major exception is image compression and reconstruction, for which an orthonormal set 
of wavelets is desirable (Farge, 1992).  Given that our focus is in identifying structures of 
a particular size, not in image compression, we have chosen a particularly simple 1D 
representation of Ψ that is easily extended to 3D.  We write 
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particular normalization ensures that large and small structural features are treated 
equivalently. 
 
Figure 1 shows schematically how Eqs. (1) and (2) are used in 1D.  This figure illustrates 
the general principles that are extendable immediately to 3D. Figure 1a (black) shows a 
hypothetical signal along a spatial axis, where the signal intensity is either zero or 
nonzero along the axis. The wavelet is shown in red. As described in Eq. (2), the wavelet 
has a uniform positive value (1/a) in a central region of extent a, and a negative value (-
1/2a) in two surrounding regions, each of extent a.  The integral of the wavelet over the 
spatial domain is zero. The wavelet transform is obtained from Eq. (1) by (i) integrating 
the product of the wavelet and the signal over the entire spatial domain, (ii) assigning the 
resulting value to the spatial location of the center of the wavelet, and (iii) translating the 
wavelet over the entire spatial domain and repeating the integration at each location.    
 
It is now easy to see how this method can be used to identify particular-sized structures.  
Figures 1b-c show the same signal as in Fig. 1a, but with different sized wavelets. 
Objects that just fill the positive part of the wavelet produce maximum correlations (Fig. 
1c). Objects that underfill the positive part of the wavelet produce smaller correlations 
(Fig. 1a), because of the penalizing effects of the normalization. Objects that are larger 
than the wavelet also produce smaller correlations (Fig. 1b), because of the penalizing 
effects of the negative and zero-valued parts of the wavelet. We vary the size of the 
wavelet, apply it repeatedly, and view the results.  When the wavelet size matches the 
object size, large correlations are obtained at the spatial location of the object.  Logical 
consistency requires the data to be positive definite, which can always be accomplished 
by adding a constant intensity to all of the data values. The two features of this procedure 
that define it as a wavelet method are the use of a filter that has a finite domain and 
varying the size this finite domain over all length scales.  
 
The extension of Eq. (1) to 3D is 
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but using such a true three-dimensional wavelet is computationally expensive, thus it is 
desirable to seek a solution that is separable along the spatial directions, such as 
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However, a serious problem with Eq. (3) is that two negative correlations (e.g., negative 
correlations in x and y) can combine to produce a positive correlation at a particular 
location. Consequently, Eq. (3) must be modified so that false positive correlations do not 
occur. In addition, the desired invariance of the wavelet transform to rigid body rotations 
is broken by the typical Cartesian discretization of data that is required by Eq. (3). The 
wavelet transform shown in Eq. (4) is an approximate and practical solution, as shown by 
the examples in the Results section. We write 
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H[q] in Eq. (4) is defined as follows: H[q] = q for q > 0 and H[q] = 0 for q 
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W over all permutations of x, y, and 
z, which symmetrizes the transform with respect to x, y, and z.  Rotational invariance is 
approximated by considering only cubical wavelets (a = b = c) and averaging over angles, 
where 

! 

R
i
(")  is a rotation of φ radians around the i axis (0 and π/4 radians in Eq. (5)). 

W(x,y,z,a) [Eq. (5)] is the resulting (approximately) symmetric and rotationally invariant 
3D wavelet transform.    
 
Results 
 
Figures 2-7 illustrate the utility of the proposed 3D wavelet filter just discussed.  
 
We begin with synthetic data: two 3D helices embedded in noise. The axes of the helices 
are displaced approximately by a helix diameter. The left column in Fig. 2 shows an 
analytically constructed pair of helices (strand diameter ~6 voxels) that are embedded in 
varying amounts of Gaussian noise (see Appendix A for details about the construction of 
the helices). The signal-to-noise ratios (SN) equal 8, 2, 1, and 0.5. The images in the right 
column are obtained by using the 3D wavelet filter, with a 6 voxel spatial scale (a = 6 in 
Eq. (5)), on the corresponding data volumes in the left column. Each image in the figure 
is a maximum intensity volume projection that was rendered using the freely available 

Eq. (4) 

Eq. (3) 

Eq. (5) 
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software package Priism (Chen et al., 1992). The two helices are evident, even at the 
lowest SN. (Supplementary Movie 1 online shows the volumes rotating around an axis 
parallel to the helical axes, which emphasizes that even in the lowest signal-to-noise 
image, elements of the helices are visible.)  This example demonstrates that the filter can 
extract structure from a noisy environment, for constructed data.  We consider next real 
multi-scale noisy biological data.  
 
Figure 3 shows positively stained microtubules in a typical biological environment. The 
upper left image (maximum intensity volume projection) in the figure shows data 
obtained using EM tomography of an intact centrosome embedded in plastic and stained 
(Moritz et al., 1995). Microtubules (~25 nm characteristic diameter) scattered throughout 
a noisy background and a centriole in the upper right corner are visible. The two 
additional views (left column) were obtained by rotating the volume using Priism (Chen 
et al., 1992). The upper right image shows the filtered data, using Eq. (5), with a 10 voxel 
spatial scale (a = 10, ~28 nm). Additional rotated views are shown below. The filter 
extracts microtubules from the noisy background, while excluding the larger centriole, 
whose substructural units have a characteristic size approximately three times that of a 
microtubule. 3D stereo overlays (not shown here) confirm that the extracted microtubules 
exist in the original data. Figure 4 shows the unfiltered data (upper left) and filtered data, 
as a function of the spatial scale that is used: wavelet sizes equal to 5, 10, 15, 25, and 30 
voxels, which correspond to 14, 28, 42, 69, and 83 nm. As the spatial scale increases, the 
correlations change. At 14 nm (and lower [not shown]), there are no clearly discernable 
features.  At 28 nm, microtubules are visible.  As the spatial scale continues to increase, 
the microtubules disappear and the centriole becomes the dominant feature, as expected. 
 
In order to examine how wavelet filtering would enhance the contrast of a single weakly 
discernible structure embedded in noise, we next looked at data from a negatively stained 
sample of isolated Drosophila melanogaster  γ-tubulin ring complexes (γTuRC). The 
upper left image (maximum intensity volume projection) in Fig. 5 shows data (γΤuRC 
preparation and imaging described by Moritz et al., 2000) that was obtained using low 
dose EM tomography (3.75 Å voxel size). A γTuRC is arranged much like a lock washer, 
with a ~25 nm diameter and an 8 nm characteristic annular thickness, which is not 
apparent in the upper left image. The data were filtered with wavelet sizes equal to 5,10, 
and 20 voxels, which correspond to 1.9, 3.8, and 7.5 nm. The 7.5 nm wavelet (lower 
right) clearly shows the lock washer shape. 
 
By far the most challenging EM tomographic data is that collected under the lowest dose 
and with the least intrinsic contrast. Tomographic data from unstained biological samples 
embedded in vitreous ice represent the current state-of-the-art in potential resolution and 
sample preservation, but are extremely noisy. The upper left image in Fig. 6 is a 
maximum intensity volume projection of cryo-preserved (vitreous ice) microtubules (~25 
nm characteristic diameter) that were imaged and reconstructed from EM tomography 
(Zheng et al., 2004). As is readily apparent, the low contrast of cryo-EM data provides an 
extreme test for any visualization algorithm. In order to view the low contrast 
microtubule walls (~5 nm thick) without being overwhelmed by noise, the displayed 
volume needs to be quite thin (5 voxels [11 nm] thick). The full 3D volume was filtered 



 7 

with wavelet sizes equal to 3 and 5 voxels, which correspond to 6.6 and 11 nm.  The 
upper middle and upper right images show the same volume slices (5 voxels thick) of the 
wavelet filtered data. The filtered data show an improvement in the visualization of the 
microtubule walls. In order to semi-quantify the improvement, a small sub volume (red 
box in the figure) was viewed at selected regions of the intensity histogram. The wavelet 
filtered images show a greatly extended range of intensity that contains microtubule 
structures compared to the data images, which suggests a much enhanced signal-to-noise 
in the wavelet filtered data.  
 
The final example shows the results of wavelet filtering of optical microscope images 
that were obtained using a new high resolution technique (Gustafson et al., unpublished) 
(I5S) that is capable of producing images of approximately 0.1 µm resolution in all three 
dimensions by combining structured illumination (Gustafson, 2000) with interferometry 
from two objectives (Gustafson et al., 1999). The upper left image in Fig. 7 is a 
maximum intensity volume projection of oli-green stained C. elegans gonad cells. (The 
samples were high pressure frozen and freeze-substituted, followed by embedding in 
epon plastic. Thick (~1 um) sections were cut and stained with oli-green DNA specific 
stain and then imaged.) The lower left image shows a side view of the data. The data 
were filtered with wavelet sizes equal to 3, 4, and 5 voxels, which correspond to 136, 
181, and 226 nm. The wavelets enhance both clear and diffuse features. Edges are also 
enhanced, but appear displaced with respect to their location in the original data, e.g., 
compare the interstitial space between the cells with the original data. The spatial 
centering of the wavelet kernel (Eq. (2)) is responsible for this offset of edges. We note 
that for accurate location of edges, the reference point of the wavelet kernel would be 
shifted from the center to the leading or trailing edge of the positive valued region of the 
wavelet kernel. Volumes are spatially centered correctly.   
 
 
 
Discussion 
 
 
The need to visualize structural features in our 3D noisy biological data motivated our 
research into wavelet-based filters. Fourier filters, the current method of choice, are not 
particularly well adapted to picking out the non-repetitive, multiply-oriented structures 
that comprise most biological data. Although wavelet theory rests on a well-established 
theoretical foundation (Farge, 1992; Daubechies, 1992; Boggess & Narcowich, 2001; 
Laine, 2000) extending such filters to 3D results in computational complexities that for 
all practical purposes render the power of wavelets inaccessible to most researchers. Our 
goal was to produce a computationally fast wavelet-based filter that was capable of 
finding features of a given size in any 3D (or 2D) dataset. 
 
The complexities in wavelet processing arise from the method that is used to evaluate Eq. 
(3).  Most current problems to which wavelets are applied require computational speed, 
data compression, or data reconstruction, so Eq. (3) is evaluated typically using the 
“discrete wavelet transform (DWT)” (see ch. 4-6, Laine, 2000). Our data do not require 
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compression or reconstruction, so we have used the much simpler “continuous wavelet 
transform (CWT)” (Farge, 1992), which is a direct integration of Eq. (3).  Although the 
CWT is computationally slower than the DWT, the CWT is easier to interpret and allows 
very subtle information to be visualized due to its redundancy (Farge, 1992). We note 
that the computational speed of the CWT has not been a limiting factor in our analyses: 
The CWT of a 300x300x300 voxel volume is computed in 3.6 min [4 voxel wavelet] and 
3.7 min [12 voxel wavelet] on a PC using an Intel 2.8Ghz Xeon CPU. Computational 
speed results from the piecewise constant values of our wavelet kernel (Eq. (2)):  The 
value of each 1D integral at a particular x, y, and z is obtained from the value at an 
adjacent point, by recalculating the integral at only the four locations where the kernel 
changes value. Consequently, the computational speed does not suffer greatly as the 
wavelet size increases. 
 
The representation of the 3D transform in Eq. (3), using three 1D wavelets, simplified the 
development and coding of the filter and improves computational efficiency.  Although 
alternative representations can probably be found, the simplicity and flexibility of this 
filter represents a significant advance. The only input parameter to the filter is a 
characteristic linear dimension of interest, measured in voxels, which are natural units to 
use for analyses of digital images.  Consequently, our filter can be used to visualize 
structures in any 3D (or 2D) data. The filtered data show only the strength of the 
correlation between the data and the size of interest. Of course, the user must decide 
whether or not these mathematical correlations are meaningful scientifically, e.g., see Fig. 
4.  
 
Any type of filtering has the potential to introduce artifacts.  We routinely compare our 
original data with our wavelet-filtered data to ensure that features that are enhanced by 
the filter are discernible in the original data.  In addition, when it is possible, we obtain 
data from the same sample, using independent methods (e.g., EM, if the original data 
were optical), to confirm the structural identifications. Nevertheless, some artifacts are 
unavoidable. The mathematical structure of wavelets, in general, makes them excellent 
edge detectors. Our filter acts as an edge detector when the wavelet size (a in the defining 
equations) is small compared to the feature of interest.  While edge detection and 
enhancement is not necessarily bad, it could possibly result in a disc appearing as a ring, 
or a solid ribbon-shaped structure appearing as a pair of thin solid ribbons.  (Figure 7 
shows a specific example.) Filtering with multiple wavelet sizes can usually resolve these 
anomalies, and should be done as a matter of course if only to avoid the possibility of 
missing interesting previously unknown features in the data. 
 
One of the strengths of using the CWT is that feature enhancement waxes and wanes 
smoothly as the wavelet size changes, so if the feature’s characteristic size is not known 
precisely a priori, it can still be detected with a non-optimal wavelet size (although not as 
strongly). The wavelet size can be adjusted subsequently to optimize the visualization of 
the feature of interest.  Our particular choice of the normalization of the filter allows the 
results of different wavelet sizes to be compared directly.  Larger values at a particular 
point mean stronger correlations with the associated wavelet size. We are currently 
exploring methods to automatically determine (without prior knowledge) the dominant 
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characteristic sizes in a data volume.  
 
What is the power of this method for biology? Simply stated, the ability to view a 
complex densely packed biological image and identify a backbone–ridgeline, or key 
features, is essential for interpreting biological structure. Once the glimpse of the essence 
of the structure is discerned, then other structural interpretation methodologies can be 
applied. Subsequent molecular and cell biological research can complement the structural 
studies.   
 
What is the power of this method outside of biology? The need for feature identification 
is ubiquitous:  Medical imaging (e.g., bone structure), non-destructive evaluation (e.g., 
internal cracks and defects), and even the prosaic airline baggage scanner are 
technologies whose primary function is to identify features of interest.  We are currently 
using our filter to examine data from all of these modalities.  
 
Appendix A. Analytical helix construction 
 
 
Two single helical skeletons were constructed analytically and discretized on an 
80x80x80 cubical grid, where each helix had a radius equal to 10, and repeat length equal 
to 20.  The axes of the two helices were parallel, but displaced by 18 voxels. The 
intensity of each point on this double helical skeleton was arbitrarily set equal to 10, 
while the intensity elsewhere was set equal to 0. The helices were “grown” to their final 
sizes in two steps: (1) each nonzero valued voxel has 26 neighbors. The intensity of each 
zero valued neighbor was set equal to 9, whereas, nonzero values were not changed; (2) 
Repeat step (1), using a new intensity equal to 8 instead of 9. We define the signal to 
noise ratio (SN) to equal the peak signal intensity (10) divided by the standard deviation 
of the noise (calculated in a spatial region distant from the signal). The noise was 
described by a Gaussian distribution about a mean of zero, with standard deviation equal 
to the peak intensity (10) divided by the desired signal to noise ratio.  The final analytic 
construct was obtained by summing the helix and noise values at each point.  A uniform 
shift equal to the minimum value of the noise spectrum was added to each point so that 
only positive intensities were obtained.  This uniform shift does not alter the SN. 
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Figure Captions 
 
Figure 1: Schematic 1D representation of a wavelet filter. The 1D wavelet 
transform is a measure of the strength of the correlation between the wavelet 
(red) and the data (black), at each data point. Figures 1a, b, and c show identical 
1D data (black line) that underfill, overfill, and match the superimposed wavelet 
(red line). The correlation is maximal in Fig. 1c. Figs. 1a-b produce weaker 
correlations, due to the penalizing effects of the negative portions of the wavelet 
(Fig. 1b) and the wavelet normalization (Fig. 1a). 
 
Figure 2: 3D wavelet filtering of two helices embedded in noise. 
Two analytically constructed helices (strand diameter ~6 voxels) are embedded 
in varying amounts of Gaussian noise. Data with signal to noise ratios equal to 8, 
2, 1, and 0.5 are shown in the left column. The 3D wavelet filtered data (Eq. (5), 
with a 6 voxel spatial scale (a = 6)) are shown in the right column. The helices 
can be seen even at the lowest signal to noise ratio. 
 
Figure 3: 3D wavelet filtering of microtubules and centriole. 
The upper left volume is filtered using Eq. (5), with a 10 voxel spatial scale (a = 
10; ~28 nm) that corresponds approximately to the diameter of a microtubule. 
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The filtered volume is shown in the upper right. Two additional 3D-rotated volume 
views are also shown.  The filter extracts the microtubules from the background 
noise, and ignores the centriole, whose substructural units have a characteristic 
size approximately three times the diameter of a microtubule. 
 
Figure 4: 3D wavelet filtering of microtubules and centriole as a function of 
wavelet spatial scale. The data from Fig. 3 are filtered using 5, 10, 15, 25, and 
30 voxel spatial scales, which correspond to 14, 28, 42, 69, and 83 nm.  The 
microtubules “come into focus” for the 28 nm wavelet, then “go out of focus” as 
the wavelet size increases. The centriole “comes into focus” at the largest 
wavelet values in the figure.  
 
Figure 5: 3D wavelet filtering of a γ-tubulin ring complex (γTuRC). A γTuRC 
has a characteristic 8 nm “lock washer” shaped structure, which is not apparent 
in a maximum intensity projection of the data (upper left image). The images 
labeled 5,10, and 20 voxels, correspond to wavelet sizes equal to 1.9, 3.8, and 
7.5 nm. The 7.5 nm wavelet (lower right) clearly shows the lock washer shape. 
 
Figure 6: 3D wavelet filtering of cryo-preserved (vitreous ice) microtubules. 
The upper left image shows a maximum intensity volume projection of cryo-EM 
imaged and tomographically reconstructed microtubules. The displayed volume 
is 5 voxels (11 nm) thick. Thicker volumes would obscure the microtubules, due 
to the low contrast of these data. The data (complete volume) are filtered using 3 
and 5 voxel spatial scales (upper middle and upper right), which correspond to 
6.6 and 11 nm. The filtered data show an improvement in the visualization of the 
5 nm thick microtubule walls. Different regions of intensity of the same small 
section of each image (red square) are shown in the panels below the three 
upper images.  Proceeding from left to right the displayed intensities are: full 
scale (original data), lower third, middle third, upper third.   
 
 
Figure 7: 3D wavelet filtering of C. elegans meiotic cells.The volume data 
were acquired as a 3D data stack and imaged using a new microscope that 
employs interferometry from front and rear objectives combined with structured 
illumination. The upper left image shows a maximum intensity volume projection 
of oli-green stained C. elegans gonad cells. The voxel size is 45 nm. The lower 
left image shows this same volume rotated 90° around the vertical axis (side 
view). Diffuse structure is seen. The data are filtered using 3, 4, and 5 voxel 
spatial scales, which correspond to 136, 181, and 226 nm.  (A side view of the 
181 nm wavelet is shown in the lower right.) The wavelets provide a higher 
contrast view of the cell structure.  
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